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Abstract-A general concept is presented to analyse the deformation of structures undergoing
arbitrarily large elastic and arbitrarily large plastic strains. Based on the multiplicative decompo­
sition of the deformation gradient into elastic and plastic contributions the kinematics of two
superposed finite, non-coaxial deformations are investigated. Lagrangean-type elastic and plastic
stretch tensors are introduced and multiplicative decompositions of the total stretch into these elastic
and plastic stretches are derived. It is shown that the result is independent of any decomposition of
the total rotation into an elastic and a plastic rotation.

For the second, superposed deformation the total Lagrangean logarithmic (Hencky) strain
tensor with corresponding elastic and plastic logarithmic strains is defined. If in a large deformation
analysis the first deformation is updated such that the second deformation is constrained to be
moderately large, then the total logarithmic strain tensor of the second deformation can be additively
decomposed into purely elastic and purely plastic parts. This enables an appropriate formulation
of constitutive equations for isotropic hyperelastic material behavior with associated flow rule
and evolution laws for combined isotropic-kinematic hardening. Work-conjugate to the elastic
logarithmic strain tensor is a "back-rotated" Kirchhoff stress tensor. The rotational change of its
reference configuration during the update is given explicitly.

Finally the principle of virtual work with corresponding equilibrium equations and static and
geometric boundary conditions is given. The virtual work functional is transformed to deliver the
consistent tangent stiffness matrix as basis for a finite element solution algorithm.

NOMENCLATURE

The following notations are used throughout the paper:

deformation gradient
right Cauchy-Green stretch tensor
rotation tensor
Green strain tensor
Almansi strain tensor
Lagrangean logarithmic strain tensor
Kirchhoff stress tensor
Cauchy stress tensor
reference to an elastic deformation
reference to a plastic deformation
reference to a first and a second superposed deformation, respectively
reference to a back-rotated configuration
reference to a back-rotated first and second deformation, respectively, according to Section 2
reference to a transformed first and second deformation, respectively, according to Section 2
composition of the two tensors A and B
transpose of A
square of A
inverse of A.
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I. INTRODUCTION

In finite elastoplasticity a straightforward generalization of the results of the linear theory
with additive decomposition of elastic and plastic strains and strain rates is not possible.
One concept to define plastic strains is the introduction of a local, current, stress-free
intermediate configuration with an associated multiplicative decomposition of the total
deformation gradient F into an elastic, F", and a plastic contribution, FP, where F" and FP
are in general incompatible point functions, This concept within finite elastoplasticity was
first introduced and investigated by Lee and Liu (1967) and Lee (1969) and successfully
applied by many authors [see e.g. Simo and Ortiz (1985), Simo (1988a, b) and Stumpf (1991,
1993)]. Even if this kinematical model seems to be generally accepted the identification of
plastic strain is controversely discussed in the literature [e.g. Naghdi (1990)]. Two critical
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points should be mentiond here: (I) the existence of a stress-free state, (2) the non­
uniqueness of the multiplicative decomposition of the deformation gradient and the question
which invariance requirements have to be imposed on the stress-free intermediate con­
figuration [see also Dashner (1986a) and Casey (1987)]. In the present paper it is shown
that for the analysis of finite elastic-plastic strains an explicit determination of the current
intermediate configuration is not needed [see also Le and Stumpf (1993»), if microstructural
properties of the material behavior are not taken into account. If the stretch tensor and the
Lagrangean logarithmic strain tensor, respectively. are used as appropriate strain measurcs,
a decomposition of stretch and logarithmic strain into elastic and plastic contributions is
proved to be independent of any decomposition of the rotation into an elastic and a plastic
rotation, which is not unique in the frame of a Cauchy continuum.

Based on the multiplicative decomposition of the deformation gradient Lubarda and
Lee (1981) derived a decomposition of the deformation rate d under the additional assump­
tion that the elastic rotation Re resulting from the polar decomposition of Fe vanishes and
that Fe is a positive definite symmetric tensor. Under this strong restriction, which cannot
be satisfied in general, they showed that in the additive decomposition the "elastic" defor­
mation rate de is dependent on the plastic deformation and the "plastic" deformation rate
dP is dependent on the elastic deformation as welL This result was generalized by Stumpf
and Badur (1990) without introducing any additional assumption. Using the concept
of objective Lie derivatives the decomposition of the deformation rates referred to the
undeformed, intermediate and deformed configuration is considered in Stumpf (1993).
where it is shown that for all three pictures an additive decomposition into purely elastic
and purely plastic parts is not possible. Therefore. they are not very suitable measures for
formulating elastic and plastic constitutive equations and for deriving tractable solution
algorithms for large strain deformation.

In many papers of finite elastoplasticity based on the kinematics of the multiplicative
decomposition of the deformation gradient [e.g. Dafalias (1983)] constitutive equations are
also formulated for the plastic spin wP in connection with a symmetric Cauchy stress tensor.
In contrast to these results Stumpf and Badur (1990) and Nemat-Nasser (1992) proved
that for a Cauchy continuum the plastic spin is a function depending on dP and on
the elastic and total deformation, respectively. In continua with microstructure [see Le and
Stumpf(1994)] separate constitutive equations have to be formulated for the plastic torsion
rather than for the plastic spin.

The aim of this paper is to present kinematics and the associated constitutive model
for arbitrarily large elastic and arbitrarily large plastic strains. The material behavior is
assumed to be isotropically elastic and plastic with isotropic and kinematic hardening.

Dashner (I 986b) investigated large strain clastic-plastic constitutive relations under
thermodynamic restrictions. He derived a formula, which allows a multiplicative decompo­
sition of the total stretch into an elastic and a plastic stretch. The Drucker-inequality and
JTtype yield functions with isotropic work hardening were considered in detail. Simo (I 988a)
established a framework based on a hyperelastic stress response and a reformulated flow
rule in the strain space. Difficulties arise due to the fact that the strain rates employed to
formulate the constitutive equations are not purely elastic and purely plastic measures,
respectively. The presented incremental algorithm can realize load steps corresponding to
strain increments of about I%. By applying the logarithmic strain tensor Weber and Anand
(1990) investigated the analysis of materials, which are initially isotropic and remain so
during the elastic-plastic deformation. This model excludes any anisotropy induced by
kinematic hardening. The logarithmic strain tensor is also used in Etorovic and Bathe
(1990) to derive a constitutive model, which allows the analysis of moderately large elastic
strains and plastic strains up to about 40% with isotropic and kinematic hardening. In the
last three models the plastic spin is assumed to be zero.

In the analysis of this paper no assumptions or restrictions are made concerning the
magnitude ofelastic and plastic strains or elastic and plastic rotations and spins, respectively.

The occurrence of large plastic strains is almost obvious, especially in metal plasticity,
where they often appear in combination with small elastic strains. But if the volumetric
(hydrostatic) pressure is very high as in the case of high velocity impact and explosion
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phenomena, even metals can undergo large elastic dilatational changes. Also, considering
rubber-like materials, where large elastic strains commonly occur, the long-term behavior
with viscous properties can lead to large plastic strains, too. So, it seems to be worthwhile
investigating finite elastic-plastic material models with simultaneous large elastic and large
plastic strain deformations. The same can be said about the rotations, which are the main
contributions in the non-linear deformation behavior of thin shell-like structures [see e.g.
Stumpf (1986) and Pietraszkiewicz (1977, 1989)]. Therefore restrictions concerning the
magnitude of elastic and plastic rotations can be made only in the frame of the structural
model under consideration.

The basic assumption of our investigation is the multiplicative decomposition of the
deformation gradient. With this point of departure we have to derive appropriate elastic
and plastic strain and strain rate measures. First, we consider in Section 2.1 the exact
kinematics of a finite, non-coaxial deformation and determine a decomposition of the total
stretch into a plastic and a back-rotated elastic stretch. Special attention is paid to obtaining
stretch tensors referred to fixed reference configurations allowing the use of their material
time derivatives as objective rates.

In general, incremental approximation procedures are based on the superposition of
an infinitesimally small deformation on a finite deformation. To avoid any shortcomings
we investigate in Section 2.2 the exact kinematics of two superposed finite elastic~plastic

deformations. The stretch of the second, superposed deformation is decomposed into elastic
and plastic parts referred to a back-rotated first deformation. Also the total stretch is
decomposed with respect to the undeformed reference configuration. Then in Section 3 the
superposed deformation is constrained to comprise only moderately large elastic~plastic

strains, but unrestricted rotations. Introducing the Lagrangean logarithmic (Hencky) strain
tensor it is shown that within the moderate strain assumption for the superposed defor­
mation the logarithmic strain tensor can be additively decomposed into purely elastic and
purely plastic contributions, and for a fixed and known first deformation also the objective
time derivative of the logarithmic strain tensor can be additively decomposed into purely
elastic and purely plastic logarithmic rates. To ensure that the superposed deformation
remains within the limit of moderately large strains, an update of the first deformation has
to be performed, when this limit is attained. The orientational change of the reference
configuration during the update is determined exactly.

In Section 4 the objective rates of the elastic and plastic logarithmic strain tensors are
used to formulate appropriate constitutive equations for isotropic~hyperelastic material
behavior and associated plastic flow rule for combined isotropic-kinematic hardening. The
model comprises materials, which are initially elastically isotropic and remain so during the
deformation process. The plastic response may be anisotropic according to continuous
plastic flow. Materials of this type with no explicit account for the microstructure are
considered in Casey (1987) and they are denoted materials of type A, in contrast to those
of type B with a strong dependency on the microstructural concept [see also Dashner
(1986a)].

It is furthermore shown that within the moderate strain assumption for the superposed
deformation the stress measure work-conjugate to the Lagrangean logarithmic strain tensor
is a back-rotated Kirchhoff stress tensor. Of special importance is the fact that the back­
stress tensor describing kinematic hardening has to be referred to the same reference
configuration as the back-rotated Kirchhoff stress tensor. Its rotational change during the
update procedure has to be determined exactly.

In Section 5 the principle of virtual work is formulated and equilibrium equations and
static boundary conditions are derived as Euler-Lagrange equations. Finally, the tangent
stiffness matrix for a finite element procedure is presented.

2. KINEMATICS OF NON-COAXIAL ELASTIC-PLASTIC DEFORMATIONS

2.1. One finite elastic-plastic deformation
We consider the deformation t/J of a body 23 from the initial undeformed configuration

~ to the deformed configuration 23. Let X be the position vector of a material point in ~
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and x = <!>(X, t) its posItIOn vector in the deformed configuration, where t is the time
parameter. The deformation gradient F decribes the tangent of the deformation, F = Tc/).
Assuming that the deformation is regular then the right polar decomposition is valid,

F = RU, R1R = L lJ = U' > 0, (I)

where R is the rotation tensor and U the symmetric, positive definite Lagrangean stretch
tensor

. ~'l \
\" .I

and E the Green strain tensor.
Following Lee and Liu (1967) and Lee (1969) we use the concept of a local, current,

relaxed state lSI' of the elastic-plastic body with stresses removed and change of temperature
to a constant reference value. Then the multiplicative decomposition of the deformation
gradient F into elastic and plastic parts Fe and FP is valid

F=FCFP.

where in general Fe and fP are incompatible point functions.
Applying the polar decomposition theorem to fC and fP we obtain

Fe = Rcue. ue' = FclF'.

(3)

(4)

(5)

with symmetric and positive definite elastic and plastic stretches UC and U'. A schematic
sketch of the polar decompositions (I), (4) and (5) is shown in Fig. I.

In finite elastoplasticity a crucial point is the definition of objective elastic and plastic
strain rate measures. In order to avoid the need to use Lie derivatives as objective rates [see
also Marsden and Hughes (1983)] we focus our attention on the definition of Lagrangean­
type elastic and plastic stretch tensors referred to fixed reference configurations.

The total stretch U and the plastic stretch lJP are referred to the undeformed con­
figuration ~, while the elastic stretch UC is referred to the transformed configuration Il)p

o1l !=----=---.I.

R

Iiep

Fig. I. Decompositions of the deformation gradient F.
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(see Fig. 1). We first introduce a back-rotated elastic stretch tensor -oe by

2643

(6)

which transforms the plastically stretched configuration mp into the elastic-plastically
stretched configuration meP. With (6) and (3)~(5) the total deformation gradient F can be
obtained in the form

(7)

leading with (2) to the following decomposition of the total stretch tensor U into elastic
and plastic parts

(8)

The back-rotated elastic stretch tensor -oe is in the general case of non-coaxial deformations
not an appropriate measure to define objective elastic strain rates. This can be seen immedi­
ately from the fact that in eqn (7) the composition of the two symmetric stretch tensors -oe
and UP is non-symmetric and non-commutative and therefc1re connected with a rotation

R, which can be determined by polar decomposition

with the total stretch tensor

and the rotation tensor

* -J>r * *F:= ueUP = RU (9)

(10)

(11)

Equations (7), (9) and (10) lead to the deformation gradient F and a decomposition of the
total rotation tensor R in the form

F = RU, R = ReRPR. (12)

With the rotation R we are able to define an elastic stretch tensor ue, referred to the

undeformed configuration m, by pulling back -oe with R. Correspondingly we introduce a

transformed plastic stretch tensor UP,

(13)

where UP is referred to the stretched and rotated configuration ~ep.
Using (9) and (13) we can transform (7) as follows:

(14)

From (14) we derive the decomposition of the total stretch tensor U into the elastic

and plastic parts ue, UP:

(15)
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Also from (14) we can see that DC is referred to the undeformed configuration -B as
mentioned above. Equations (8)1 and (15) show that the two decompositions of the total
stretch U are independent of any assumption about elastic, RC

, and plastic rotation RP.

2.2. Two superposed finite elastic--plastic deformations
Efficient numerical approximation procedures are based on the superposition of two

deformations, where in general the second deformation is assumed to be infinitesimally
small and an update procedure is performed for the first deformation after each load step.
To analyse elastic-plastic deformations undergoing arbitrarily large strains and to avoid
serious shortcomings in the numerical approximation procedure we investigate in this
section the exact kinematics of two superposed non-coaxial finite elastic-plastic defor­
mations.

I

Let us consider a first finite elastic-plastic deformation ¢ with the deformation gradient
I 1 ')

F: T-B ---+ T\B and a second superposed elastic-plastic deformation ;p with the deformation
2 I 2 2 I

gradient F: T\B ---+ T\B such that we have the total deformation ¢ = 4) ¢ with the total
deformation gradient:

2 I

F = FF: T-B ---+ TIj:,. (6)

I

Quantities related to the first deformation ¢ are indicated by C:) and quantities related to
the second superposed deformation are indicated by (~).

Let us consider in this section the kinematics of the superposed deformation with
10 I I I 10

respect to a configuration \Bcp, obtained from \B by pull-back with RC RP, where \Bcp cor-
responds to -Bep of the previous section (see Fig. 2). Applying elastic--plastic and polar

2

decomposition to the deformation gradient F, we obtain analogously to (7)

~ 1 2:2 j ~

F = Reuc RP UP: T\B ---+ T\B. (17)

10 20

Referred to \Bcp we define the deformation gradient F by pulling back one leg of the two-
2 I I

point tensor F with Re RP :

20 2 1 I 10 2

F := F Re RP : T\BCP ---+ T\B (18)

20
R

Fig. 2. Decompositions of the total deformation gradient F for two superposed deformations.
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yielding the stretch tensor of the second superposed deformation:

2 2 2 20 20 20 I 1 2 I I

U2 = FTF, U2 = FTF = (RP)T(Re? U2ReRP.
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(19)

Similar to the procedure outlined in the previous section we derive a decomposition of the
20

stretch tensor U in terms of elastic and plastic contributions. Defining back-rotated stretch
tensors for the second deformation (see Fig. 2)

20 I I 2 I I
UP := RpT ReT UP ReRP,

20 1 I 2 2 2 I 1
Ue:= (RP)T(Re)T(RP)TUeRP Re RP

the deformation gradient (18) can be written in the form

2022112020
F = ReRP ReRPue Up.

(20)

(21)

w w ~

To the composition UeUP, identified with a gradient F, we apply the polar decomposition
theorem

2- 20 20 2- 2-
F:= ueup = RU.

Introducing (22) into (21) yields

20 2 2 1 1 2' 2- 20 20
F = ReRPReRPRU = RU,

with
20 2- 20 2 2 I I 2-
U = U, R = ReRPReRPR.

(22)

(23)

(24)

20
From (21) and (22) the decomposition of the stretch tensor U into elastic and plastic parts

2-

and the rotation R

20 20 20 20
U2 = UPUe2 Up

2- 20 20 20 20 20
R = ue UP (UP) - I (Ue) - 2(UP) - I

(25)

(26)

are obtained.
If we assume that the first deformation is fixed and known by preceding calculations

10 20 20
then the configuration mep is fixed and known and therefore the stretch tensors U and UP

20
are of Lagrangean type, while ue is not. To obtain a Lagrangean-type elastic stretch tensor

2' 10
denoted by ue and orientationally referred to ~ep we define

2' 2' 20 2- 2- 2- 20 2­
ue:= RTueR, UP:= RTuPR.

Then, analogously to (14), eqns (21), (22) lead, with (27), to

20 2 2 1 I 2- 2- 2-
F = ReRPReRPR2UPue,

20 2- 2- 2-
U2 = Ue(UP)2 ue,

(27)

(28)
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:20

where (28h represents a decomposition of the stretch tensor U into elastic and plastic parts.
as an alternative to decomposition (25).

2.3. Total elastic·-plastic de/or/nation
In the previous section we considered stretches and rotations of the second superposed

deformation. To construct an efficient numerical approximation procedure allowing the
analysis of finite e1astic~plastic deformation of structures the magnitude of the second
deformation must be restricted with respect to some norm, as will be shown in the next
section. Then from time to time an update has to be performed and the total elastic and
plastic stretches and also the orientational change of the reference configuration must be
determined.

Defining for the first deformation

"10 ! i 1

UC ,= (RP)1 UC RP

we can derive the following formulae for the total deformation gradient

2 I 20 1 I I ~ 2 I I 20 20 I\) 1

F F F = F (RP)I (R")T F = R" RP RC RP U" UP U" U'

and
_: .2 ! I ::~ 2" 10!

F = RCRPRc RPR2 U'UClYlJP,

yielding the total stretch decompositions

J J() 20 20 10 J0 J

U2 = FTF = UPUCUP (uc)2U'lJ"U',

I 10 1* 1* 10 I

U2 = U'UC UC (Up)luc ueup

and
20 10 I I 10

U2 = (U") i (lJP) IlJ2 (UP) I (U") I

(29)

(30)

(31 )

(32)

(3J)

(34)

As can be seen from the total deformation gradient F according to (30) and (31) clastic
and plastic stretches appear separately for the first and second deformations. Our intention
is now to determine total elastic and total plastic stretches. This can be performed by using
a similar procedure to that outlined above.

2~ 1* III

First we identify in eqn (31) the composition U' L!" UC with a deformation gradient F
and apply the polar decomposition theorem,

leading to

H ~* In

F:= UP UClJ" = RD (35)

2* 1* 10

R = UPUCUcu
In 2"" 2* JO

D2 = uoue (Up)2U"Uc. (36)

Then we transform (35) and (31) as follows:

JO 2*

F = RFTR = R lJ" lJe UP R,

2 "2 I I 2* \0 2* ,2* I

F = RCRPRc RPR2 RU"lJc UPRUP.

(37)

(38)

To derive the total elastic and total plastic stretches we consider in (38) the compositions
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10 2* 2* I

u eUeand UP R UP and apply again the polar decomposition theorem:

+ 10 2* + +
Fe:= ueue = Reue,
+ 10 2* + + 2* 10 2*
Re = ueue(ue)-I, (Ue)2 = u e(ue)2ue

and
+ 2* 1 + + +
FP:= UPRUP= RPUP, UP = UP,
+ 2* I I 2* 1
RP = UPR UP (UP)- 1, (Up)2 = UPRT (UP)2R Up.

With (39), (40) and with a back-rotated total elastic stretch tensor

+ + +
De:= (RP)TueRP

the total deformation gradient (38) is obtained in the final form

2 2 1 1 2* + + 0 2
F = ReRPReRPR2RReRPueup: T~ ~ 1'B
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(39)

(40)

(41)

(42)

leading to the following decomposition of the total stretch U into total elastic and total
plastic stretches De and UP :

(43)

The tensors U and UP are referred to the undeformed configuration ~, while De is direc­
tionally referred to the configuration ~ep.

For our further considerations it is essential to determine the orientational change
10

between the configurations !Bep
, reference configuration for the superposed second defor-

mation, as outlined in the previous section, and ~ep reference configuration for future
superposed back-rotated stretches, as indicated above. Denoting this rotational change by

#
a rotation tensor R a comparison of (18), (23) with (42) leads to the result:

# 2* + + 1 10 20
R = RRReRP = De UP (Up)-I (Ue)-I U-I. (44)

Rotation (44) will be needed in the numerical approximation procedure, when an update
of the first deformation has to be performed.

3. LOGARITHMIC STRAINS AND RATES OF LOGARITHMIC STRAINS FOR THE
SUPERPOSED DEFORMATION

3.1. Additivity of the logarithmic strains for moderately large strains
To perform the analysis of deformations undergoing finite elastic and finite plastic

strains we decompose the total deformation into two parts assuming that the first defor­
mation is known from preceding calculations. For the second deformation we presume that
the associated strains are moderately large. When during the computational analysis the
second deformation reaches the limit of moderate strains (e.g. about 10%) then the first
deformation has to be updated ensuring that the strains of the second deformation are
restricted to being only moderately large, while the total strains may become arbitrarily
large. With the notation of Section 2.2 we assume

20 20
IIEII = 11!(U2 -1)1I =0(8),
2* 2*

IIEel1 = II Hue)2-1) II =0(8),
2* 2*

flEPIl = II HUP)2-1)11 = 0(8), (45)
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(46)

where 0(02
) is a small, tensor~valued quantity. Estimations of the type (45). (46) are

frequently applied in the derivation ofshell theories [e.g. Pietraszkiewicz (1977, 1989), Nolte
and Stumpf (1983), Schmidt and Stumpf (l984), and Schieck et af. (1992)J.

1 10

After analysing the first deformation the stretch tensors U!' and Ue are known and the
total stretch tensor U2 can be computed from the total deformation gradient F.

m -
The back~rotated stretch tensor U of the second deformation follows from eqn (34)

with

211 20 \(I 1 i lO

U2 = (1 + 2£) (Ue ) ···1 (lJP) Itf (UP) i (ue ) I (47)

20

Using the estimation (45)1 the Lagrangean logarithmic strain tensor H of the second
deformation can be defined and approximated by series expansion as

20 20 10 20 20

H:= In U = Hn (1 + 2E) = (E- £2)(1 +0(02
). (48)

Analogously to (48) we define the logarithmic elastic and plastic strain tensors of the second
deformation approximated by

20 ~o 20 20

He := In Ue = (Ee _ (E")2)(1 +0(02»,
20 20 20 .::0

HP:= In UP = (EP - (EP) 2)(1 +0(02»,
..,* 1"< 1* ")"

HC := In tIC = (EC
_ (EC) 2)(1 +0(02»,

2* 2* 2* 2*

HP:= In UP = (£1' - (Epn(1 +0(82».
20

Using a series expansion, UP can be approximated as

20 /"" "'10'- 20 20

UP = yll+2EP = (I+EP-hEP)2)(1+0(03)).

(49)

(SO)

(5])

(52)

(53)

20
Applying this estimation technique to the total stretch tensor U of the second deformation
according to (25) we obtain

20 20 20 20 20

U2 1+2£ = UP (U")2U'

=J~ + 2~~ (l +2Ee)J~~;:p
20 20 20 20 20

= (I+EP ~(EPr)(1+2EC)(l+EP-1(EP)2)(1+0(03»

~~o 20 20 20 20 20

= 1+2(Ee +EP+£"Ep+EpEe)(I+0(82». (54)

With (54) we derive the following form of the Lagrangean logarithmic (Hencky) strain
tensor (48)
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20 20 20 20
H = ! In U2 = (E-E2)(1 +0(02»

20 20 20 20 20 20

= [(Ee+EP+EeEP+EPEe)
20 20 20 20 20 20

- (Ee+EP+EeEP+EPEe)2J (1 +0(02»

leading to the additive decomposition:

20 20 20
H = (He+W)(1+0(02».

20
A second additive decomposition of H can be obtained by applying formula (28)

20 2* 2*
H (He + HP)(l +0(02».
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(55)

(56)

(57)

A comparison of (56) and (57) shows that for moderate strains of the superposed defor-
2* 2* 20 20

mation the tensors ue and UP can be approximated by u e and Up. Therefore besides the
2' 20 10

tensors Ue and UP referred to the fixed configuration iBep given by the first deformation the
20 2*

tensors Ueand UP are also referred to the same configuration within the error margin. The
same statement is valid for the elastic and plastic logarithmic strain tensors.

It should be pointed out that eqns (56) and (57) present an additive decomposition of
the total Lagrangean logarithmic strain of the second deformation into purely elastic and
purely plastic contributions, in contrast to the Green and Almansi strain tensors, which in
the general case of large elastic and plastic strains cannot be decomposed additively into
purely elastic and plastic parts [see e.g. Stumpfand Badur (1990) and Stumpf (1991, 1993)].

3.2. Additivity of the rates of thelogarithmic strain tensors
The stretch of the second deformation is determined by eqn (47), where the stretches

10 I 20
Ue and UP are known from preceding calculations. The stretch tensor U and its logarithm
20 10 20
H according to (48) are referred to the fixed configuration iBep

• Therefore the variation oE, 20
and the second variation AJE are objective and can be derived in the usual way leading to

and

with

and

20 20 10 J ! to
oE = ~<5U2 = (U") - I (UP) - I <5E(UP) - I (Ue) - I

20 10 I 1 10
A<5E = (Ue) !(UP)-l AJE(UP)-I(Ue)-I,

(58)

(59)

(60)

(61)

Here 0(') and Ao(') indicate the first and second variation, respectively.
20

The first variation of the logarithmic strain tensor H (48) can be approximated by

20 20 20 20 20 20
oH = (oE-EOE-c5EE)(1+0(02»

and the second variation by

20 20 20 20 20 20 20 20 20 20
Ac5H = (AoE-AEJE-OEAE-EAoE-AoEE)(1+0(02».

$AS 3IhI9-£

(62)

(63)
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Analogous results are also obtained for the first and second variation of the logarithmic
2* 2"

strains He and HI'.
Within the moderate strain approximation for the superposed deformation we can

20
decompose the logarithmic strain tensor H additively into its elastic and plastic parts, as
shown in eqns (56) and (57). Because the elastic and plastic logarithmic strain tensors are

10

referred to the fixed configuration !Bel' within this approximation also the first and second
variation (62) and (63) can be decomposed additively leading to

and

20 1* 2*

8H = (bW+bHp)(1 +0(02»

20 2* 2*

LlbH = (MW+AbHP) (l+O«(j2».

(64)

(65)

10

In order to define in the next section the stress tensor, which is work-conjugate to bH, we
20

present here the geometrical interpretation of bH. Within the error margin eqn (62) can be
rewritten as

20 20 20 20
bH = [(1-E)bE(I-E)J(1+O(82»

211 20 20
= (V- 1 bEV- I )(1+O(02»

20 20 20

= (V T bEV- 1)(1+O(02».

20 10 2

The polar decomposition (23) of the deformation gradient F: T!Bep
-> T'l3 yields

:20 20 20 20 20 20

U I = FIR. U' RT F- T •

(66)

(67)

Introducing (67) into (66) and defining the objective Lie-variation b~(') := B(') bt, where
B(') is the Lie derivative, we obtain

20 20 20. 20 20 211 ,. 211 20 20
bH = RTF-' bEFIR (1 +0(8"» = RT b\!(e) R (1 +0(02»

20
with the Almansi-type strain tensor e

"?D 20 2020

e:= F- IE F i

It can be shown that for a constant first deformation

(68)

(69)

(70)

20

where e is the total Almansi strain tensor. It follows that bH is the rotational pull-back
211

with R of the objective Lie-variation 6\!e.
To formulate the constitutive equations in Section 4 we have to consider the elastic

+ -+-- +
logarithmic strain tensor He:= In Ue with UC according to eqn (39h

+- ~l- 2* 10 2*

W:= 1ln (VC )2 = 1ln (VC (UC)2Ve
), (71)

and to determine its first and second variation.
10

We assume that the elastic stretch tensor VC is determined by preceding calculations.
+ 2'" 2* 2*

Then He depends on ve and He = In Ve, respectively. We derive the first variation in the
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following form

+ + 10 2* 2*

15M" = 15M" (Ve,M"; 15M")

I 2* 2* 10 2* 2*

= lim ~ {In [exp (M" + tJ M") (ve) 2 exp (M" + tJM")]
1-02t

2* 10 2*

-In [exp (M") (ve) 2 exp (M")]} ,

where (72) can be obtained as Gateaux differential

+ 10 2*

+ 15M" (Ve W) 2*
<5He = 2* ' • <5He

aHe
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(72)

(73)

+ 2*

with the fourth-order tensor <5HejaHe not presented here because of lack of space.
Analogously we determine the second variation as the second Gateaux differential

+
+ * 82He 2*

~<5He = ~He. 2* 2*· <5He.
oW Q98W

(74)

In the special case of total elastic strains remaining within the limit of moderate order such
10 10 + 2*

that Ve is not updated keeping always the value Ve = 1, then JHejJHe = 1 and
+ 2* 2* lO 2* 2* 2*

a2HejaHeQ9 aHe = O. This is also the case, if V, He, <5He and ~He are coaxial having the
same eigendirections.

4. CONSTITUTIVE EQUATIONS FOR LARGE STRAINS

4.1. Constitutive equations for isotropically-hyperelastic materials
20

The variation of the strain rate is given by <5H (62) under the assumption, that the first
I 10 20

deformation is known with fixed VP and ve. Since <5H is approximately equal to the Lie
derivative of the back-rotated Almansi strain tensor according to (68) and (70) the stress

w w
tensor work-conjugate to <5H is the Kirchhoff stress tensor -r back-rotated with R,

20 20 20

-r:= RT -rR.

Then the hyperelastic constitutive law can be formulated as follows:

(75)

(76)

where W denotes the free energy per initial (undeformed) unit volume. The stress tensor ~
20 10

and the logarithmic strain tensor H are directionally referred to the configuration !Bep given
by the known first deformation.

The free energy W depends on the total elastic strain and on the temperature T, where
the influence of T will not be taken into account in this paper. The total elastic strain may
be expressed by the (exactly computed) logarithm of the total elastic stretch tensor ue,
which is given by eqn (41). Thus we can write

W= W(lr,T), (77)
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HC
:= In (Y. (78)

Assuming that the elastic part of the material behavior is isotropic, HC in (77) may be
+ + -I- t

replaced by W = In ue due to eqn (71), because fJc and ue and therefore also HC and He
differ only by pure rotation, as is seen from eqn (41 ).

+
Now introducing He according to (71) into (77) and determining the back-rotated

20
Kirchhoff stress tensor 't' due to eqn (76) we obtain

+
eH

with

+ t

20 aW(HC
, T) aHe aHc

't == + • 2:-';; = 't'. 2*---'
aw oW aHc

+
+ aw(w, T)
't':=

(79)

(80)

2* 20

The partial derivative in (79) can be computed with respect to He instead of H, because
10 2* 2*

both refer to the same reference configuration ~ep, and He and HP are additive (57). The
+ 2'

expression aHe/aHe can be evaluated numerically according to (72) and (73).
The rate form of eqn (79) can be written as

20 !Il<

= iCe. He,

where in (81)

a2 W(He T) +
iCc:= '--' - = iCc (He T)

--+- + '
aW@oHc

-f

is the tangential elasticity tensor corresponding to He and

(81 )

(82)

(83)

2* 20

is the "actual tangential elasticity tensor" associated with He and H.
Essential simplifications are possible, if the elastic strains are limited. According to the

investigation of Anand (1979, 1986) the elastic strain energy for many materials (including
metals and rubber-like materials) can be expressed for elastic stretches between 0.7 and 1.3
by a quadratic form, provided the strain tensor is replaced by the logarithmic (Hencky)
strain tensor. Thus we can write

+ + +

W(UC) = 1UC'C'UC, (84)
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+
Cc = const. for IHfl ~ 0.3,
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(85)

+ +
where Hf are the eigenvalues of He.

If the elastic strains are of moderate order 0(0) < To such that the first deformation
+ • +.. *

contains only plastic stretch, aW/aHe = 11 (fourth order unity) and a 2 W/aHe ® aHe = o.
In this case

and

20

ce = ce

20 + +
't = 't = ceoHe.

(86)

(87)

These equations remain approximately valid provided the largest difference of the eigen-
+ 0 -i'T

values of He (or He = In u e) does not exceed 0.20.
The same statement is valid for

(88)

+
When the largest eigenvalue of He (or fIe) also remains below 0.20, the error introduced in
(88) remains below 5%.

4.2. Elastic-plastic constitutive equations
In order to formulate a yield condition and plastic flow rule suitable for the ther­

modynamical requirements we take into account the results of Le and Stumpf (1993).
According to this paper the free energy l/J per unit mass is a function of the total elastic
strain, it means a function of fIe, of the temperature T and the metric tensor gP of the
configuration ~P, to which Ue = exp fIe is applied:

(89)

10

If we want to refer to the configuration ~ep we have to consider the free energy function

(90)

10 10

where He = In DC is the logarithmic elastic strain tensor given by the first deformation, and
10 10

gep is the metric tensor of the configuration 58ep, also given by the first deformation. If the
elastic part of the material behavior is isotropic and remains so during the deformation the

~ 10 +
elastic strain state is sufficiently described by Wand He. They uniquely determine He (71),
which can be used to express the free energy of isotropically elastic materials.

10 10
Since the first deformation is fixed and known by preceding calculations gep and He

have constant values, and the material time derivative Dt(o) is equal to the partial time
derivative n. Thus we obtain

(91)

Next the Clausius-Duhem inequality according to eqn (3.28) in Le and Stumpf (1993) is
10

considered. Choosing ~ep as the reference configuration for the entropy production
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inequality we have
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20 20 10 1
p(nT+I!/)- r' H + T div en'q ~ o. (92)

where p is the mass density, IJ the entropy, q the heat-flow and div the divergence operator.
10

all with respect to the configuration lBep
, Introducing (57) and (91) into (92) and varying

H, H, T and T independently the constitutive equations

10

'II j"t/J
r = p c.

aHc

and the plastic dissipation

'lot
20

DP = r' HJ' ~ 0

(93 )

(94)

:w
can be derived, where W = p t/J is the free energy per undeformed unit volume.

We assume that the yield function F depends on the actual stress state, the temperature
field and a set of internal parameters as the average isotropic yield stress t

"
and the so­

called backstress tensor IX [see also Duszek and Perzyna (1991)]. Thus neglecting for
simplicity thermal and damage effects the yield function F can be expressed as

20 20
1"=1"(r.ty.IX), (95)

21) 2{)

where the back-rotated Kirchhoff stress tensor r and the backstress tensor IX are direc­
10

tionally referred to the configuration lBep
•

With (94) and (95) the associated flow rule can be derived using the maximum principle
of plastic dissipation (94) yielding

2" a1"
HP = J. 211' )I = O. ;. ~ 0 and F ~ O.

Dr
(96)

with 1" < 0 denoting no yielding and 1" = 0 denoting yielding.
Introducing the von Mises yield criterion the yield function F can be given in the form

with

, {' < 0 <=:> no yielding
F = ,,/r·r-..jh, = o<=:> yielding

.... 20 I 20 20
r= r-,(t'l)l-IX,

(97)

(98)

10
where t y is the one-dimensional yield stress. The back-stress tensor IX must be referred to

w w
the same configuration as r. This necessitates a rotational transformation of IX according
to (111), when the first deformation is updated.

From (97) and (98) it follows that

DF
:w

Dr

i
=:1"20.

ji'i
(99)
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of f
-w= ---=:F',20
OIY. ji:f ~

~F = _ 1=:Fr ,
UL v' 3 , y

y
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(100)

(101)

Taking into account results of Duszek and Perzyna (1991) the following evolution laws for

: and Ly are suggested, where we use the associated flow rule (96)

(102)

Here (, h I and h2 are material properties which may depend on the total plastic stretch V".
20

A refined evolution law for IX using the exactly computed plastic spin with reference to the
10

configuration ~ep will be considered in a forthcoming paper. Generalizations within the
framework of extended thermodynamics are proposed in Stumpf and Badur (1992).

Inserting (96) into (81) and using (64)

io 20 io
't' = Ce

• (H - AF', 20 )
r

(103)

is derived, where thermal strains are not considered for simplicity. During the process of
yielding F = 0 has to hold, thus the condition

• 20 i,
F = F 20 • 't' +F 2' • HP = 0

, 'HP

has to be satisfied, where

ioof OIX Oiy
F 2' := -,- = F 20 • __ + F --.

• HP 2 , IX • ,'t"y.

oHP 2' 2'
oHP oHP

Equations (96) and (103) are inserted into (104) yielding

20 io
F',20 •CO • (H - AF', 20) +F', H2'P • AF',20 = O.

r r r

Solving this equation with respect to A

20 20

F,20'CO'H
A = --~20'---'-------­

F 20 • CO •F 20 - F 2' • F 20
, r ' 'HP'

is obtained. Introducing (107) into (103) results in

io 20 20
't' = Cep

• H,

(104)

(l05)

(106)

(107)

(108)
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10 20

(CO' F20) ® (F2o ,CO), ,20 10

cep = C"-- 20

F2o' Co, F20 F 2* • F 20
. 11" .

(l09)

is the elastic-plastic material tensor. In an incremental formulation we obtain from (l09)

20 20 20

~T = COP'~H, (110)

20 20 20 20

where ~T = T At is the stress increment, ~H = H ~t the strain increment and ~t a small
positive time increment. Equations (109), (110) are used to establish the consistent tangential
stiffness matrix in a FEM program.

Equations of the type (95)--(110) are already well known from the non-linear small
strain analysis. There we have to replace the Green strain tensor by the logarithmic strain
tensor of the second deformation and the second Piola--Kirchhoff stress tensor by the back­
rotated Kirchhoff stress tensor. Therefore subroutines in common use, which model the
elastic-plastic material behavior, can be employed.

]0 20 20
When the first deformation is updated, the reference configuration mep for T and IX, is

#
changed (see Section 2.3). Thus they have to be rotated using the rotation tensorR according

lO

to (44), which describes the change of the directional orientation of the configuration mep

during the updating, resulting in

(III)

where ('h and ('L indicate tensors before and after the update of their reference con­
figuration

20
If the stresses T are computed directly from the elastic stains using eqn (79) the

transformation (111)1 is superfluous because it is implicitly fulfilled as a result of the
+ 2* 20

directional changes of He and He. But the back-stress tensor IX has always to be transformed
explicitly.

5. PRINCIPLE OF VIRTUAL WORK, BOUNDARY CONDITIONS AND ASPECTS OF
NUMERICAL REALIZATION

The principle of virtual work as a weak form of the equilibrium equations and
static boundary conditions can be used to derive an efficient finite element algorithm. As
basic variables of a virtual work functional suitable for the large strain analysis of this

20
paper we use the back-rotated Kirchhoff stress tensor 1: and the variation of the logarithmic

20

strain tensor of the second deformation bH. Within our approximation they are work-
conjugate and referred to the initial (undeformed) volume V. Thus the internal virtual work
IVW results in

r 20 20 0

IVW= J~'t"bHdV. (112)

The external virtual work EVW is given by the volume forces p and surface traction P,
which are work-conjugate to the variation of the displacement field bu, both referred to the
actual volume V and actual surface S, respectively, resulting in

EVW = -1.P·bUdv-l P'<5u dS. ( 113)
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With the Jacobian, J, the conservation of mass yields

Po dV
J=-=-

P dV'
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(114)

where Po and p are the mass densities of the initial and actual configuration, respectively.
We introduce volume forces of Kirchhoff-type p referred to the initial volume V

o dV
p:=Jp = P-o

dV

and analogous surface tractions related to the initial surface S defined by

Introducing (115) and (116) into (113) yields

(llS)

(116)

(117)

With the internal virtual work (112) and the external virtual work (117) the principle of
virtual work can be formulated as follows:

f, 20 20 1vw = IVW+EVW = (or ·£5H-p·£5u)dV- P·£5u dS = 0
v $

(118)

for all geometrically admissible variations £5u satisfying homogeneous geometric boundary
conditions on that part of the boundary, where geometrical quantities are prescribed.

To derive the Euler-Lagrange equations of (118) we introduce (68), (70) and (75) into
(1l8) and obtain

Expressing in (119) the Kirchhoff stress tensor T by the Cauchy stress tensor (1

T = J(1

and using (115) and (116) eqn (119) can be obtained as

In (121) we transform the Lie-variation of the Almansi strain tensor as follows:

(1l9)

(120)

(121)

(122)
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-
where x and X are position vectors of material points in the actual configuration \B = \B
and in the initial configuration ~. With u we denote the total displacement field and with
V' the gradient operator with respect to the actual configuration.

Introducing (122) into (121) and applying standard variational technique we obtain
the local equilibrium equation

and the static boundary conditions

div G + P = 0 in V (123)

(124)

as Euler-Lagrange equations, where n denotes the outer unit normal vector on S, and Sp
denotes that part of S, where static quantities are prescribed. The complementary geo­
metrical boundary condition is

u = u* on Su' (125)

where u* is the prescribed displacement on Suo
The incremental form of (118) allowing the construction of the consistent tangential

operator for an appropriate finite element algorithm can be derived as Gateaux differential
of the virtual work functional VW according to (118) :

~VW = ~VW(u, ~u; bu)

r 20 20 20 20 • f .,
= J,( 1" ~bH +~1" bH -M)' bu) dV-~ ~p. bu dS. (126)

where ~ and c5 indicate independent variations of the displacement field u. The variations
20 20 20

bH, ~<5H and ~1' are given by (62), (63) and (81) or (110), according to elastic or plastic
material response.

The virtual work functional (118) can be expanded in a Taylor series yielding

VW(u+~u;<5u) = VW(u;c5u)+~VW(u,~U;(ju)+'" = 0, (127)

where the first term is given by the functional (118) and the second term by (126).
Let us introduce nodal displacements qi, i E {I, 2, 3, .... n} (nodal degrees of freedom)

determining the interpolation of the displacement field

u = u(qJ, i = 1,2, .... n.

Then we obtain the variational quantities

au
~u =:1 ~qi' j = I, ... , II.

eqj
20

ID ID aH
<5H = <5H (u; bu(bqJ) :=l' (ju,

eu

(128)

:w 20

~<5H = ~bH(u; ~u(~q),

20

a2 H
c5u(bq)) :=--- ~u bu,

t. ou (8) ou (129)



for elastic response,

for plastic response,
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20 20

20 {C 0 ,1H (U; ,1U(,1qj»
,1-r = 20 20

CP 0 ,1H(u; ,1U(,1qj))
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20 20

_ O-r ooH A

- 20 -L1U
oH OU

in general. (130)

With (129), (130) eqn (127) takes the form

or equivalently

(131)

(132)

where higher order terms were neglected. In (131), (132) i and j are running from 1 to n
with summation over indices appearing twice in a term. In (131) and (132), respectively,

20

I(20 oH ou 0 Ou) 0 1~ ou ...RFV
i
= -r0 po_ dV- ro-d.,)

v ou Oqi Oqi S Oqi

is the residual force vector and

(133)

the consistent tangent stiffness matrix.
Equations (132), (133) and (134) are basic formulae for the Newton-Raphson iteration

scheme. In (132) ,1q; denote the corrections of the nodal displacements qj, and RFVi is
going to be iterated to zero.

6. CONCLUSION

The introduction of the Lagrangean logarithmic strain tensor for a superposed mod­
erately large strain deformation and its additive decomposition into purely elastic and
purely plastic parts enables an appropriate formulation of isotropic-elastic and plastic
constitutive and evolution equations with combined isotropic and kinematic hardening. All
formulae are given to analyse deformations undergoing arbitrarily large elastic and arbi­
trarily large plastic strains. The presented concept can be used to formulate a solution
algorithm, that can realize load steps corresponding to moderately large strains and unre­
stricted rotations. No assumptions are needed concerning the decomposition of the rotation
into an elastic and a plastic rotation or concerning the magnitude ofelastic and plastic spin.
The presented model can be employed to derive a theory of shells undergoing large elastic
and large plastic strains and finite rotations based on the shell theory of Schieck et al.
(1992). This will be shown in a forthcoming paper (Stumpf and Schieck, 1993).
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